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Interesting correlations between individual maps have been reported in systems of globally coupled
maps and of uncoupled maps submitted to a global noise. These have been described under the heading
“violation of the law of large numbers.” An elementary explanation of this phenomenon is proposed. It
is illustrated in a simple approximation for logistic maps. We then introduce an alternative model of
coupled homographic maps which is much easier to study. A precise analysis of the emergent collective

dynamics is given.

PACS number(s): 05.45.+b, 03.20.+1i, 47.20.Ky

I. INTRODUCTION

Dynamics in systems with many degrees of freedom is
an area of active investigations [1,2] in fields ranging
from hydrodynamics to neural networks. Globally cou-
pled systems form a particularly simple class [1,3-6]
where interesting cooperative dynamical properties have
been observed [3,7-11]. The present work is motivated
by intriguing observations in ensembles of maps. Kaneko
[3] has studied the dynamics of a system of logistic maps
globally coupled through their mean:

x, ()=(1—¢€)f(x,(i),a)+e€h, , (1)

1 X .
h,’N=—ﬁ2f(x,(t),a) , (2)

i=1

where {t} is a discrete time index, {i} is the map index
which varies from 1 to N, and € the coupling parameter.
f(x,a) is the logistic map

fi(x,a)=1—ax?. (3)

The value of a is chosen close to 2 so that the individual
maps are fully chaotic. In the uncoupled case (e=0), the
N variables behave as independent random variables. So,
the fluctuations of 4, y decrease like 1/ V'N and vanish in
the limit of a large number of maps (N— o). On the
other hand, for any small positive coupling (e>0), it is
found that the mean field A, y does not relax to a con-
stant value and has a nonzero variance even in the limit
of infinite system size. This is the so-called ‘“violation of
the law of large numbers” [3]. An interesting simplifying
step is taken in [12] where the dynamics of an ensemble
of uncoupled logistic maps submitted to a common noise
term is numerically studied. The main observation of
[12] is that in this case a ‘“violation of the law of large
numbers” is observed as well (i.e., the mean

N
By =(1/N)S, f(x,())
j=1

fluctuates in time, even in the large N limit). As the name
implies, in both cases the phenomenon has been attribut-
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ed to an anomalous dependence of the fluctuations on the
system size. In the following sections we argue instead
that the phenomenon arises because the sharply defined
infinite size limit mean field #,(=limy_, .4, y) has a non-
trivial dynamics. Therefore, A, varies in time around its
time-averaged mean value and the histogram of its value
has a nonzero width. In Sec. II we consider the simplest
case of uncoupled maps. We argue that the A, dynamics
is created by correlations between different maps created
by the common noise forcing term though it is random in
time. This is illustrated by an elementary example. The
logistic map invariant measures are very complicated [13]
as well as the relaxation toward them. So, the case of un-
coupled logistic maps submitted to a global noise is treat-
ed in a simple approximation. Nonetheless, this gives re-
sults in reasonable agreement with the numerics of [12].
In Sec. III we discuss the more interesting case of global-
ly coupled maps. For logistic maps, the existence of a
nontrivial dynamics of h, can be seen in the power spec-
trum of the time series of h, where broad peaks emerge
[3] or in return maps where 4, ., is plotted as a function
of h, [10]. In order to show simply how correlations be-
tween individual maps induced by a common forcing
term can result in a nontrivial dynamics of the mean field
when the maps are globally coupled, we introduce a new
model of coupled homographic maps. In this latter case,
the invariant measures are fully known as well as the re-
laxation toward them. This allows us to show explicitly
the emergence of a cooperative dynamics and to analyze
precisely the mean field motion.

II. CORRELATIONS
IN AN UNCOUPLED ENSEMBLE
OF CHAOTIC MAPS SUBMITTED
TO A SPATIALLY UNIFORM NOISE

We begin by considering correlations in uncoupled en-
sembles of chaotic maps submitted to a common noise
term. In [12] the following ensemble of logistic map is
studied:

X, o (D)=1—a,[x,()]*. 4)
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a, is chosen to fluctuate temporally around its mean
value a but is the same for every map at any given time.
The numerical observation of [12] is that in this case also
the mean field 4, [Eq. (2)] fluctuates in the large N limit
although the individual maps are fully chaotic and un-
coupled (e=0). As shown in Fig. 1, the mean square de-
viation (MSD) of h, Ay, decreases to a small but finite
value as N — o0

lim Ay >0 with Ay= Wiy —hiy s (5)
where the overbar denotes time average.

A simple example shows why this phenomenon is ex-
pected. Instead of being generated by iterating the logis-
tic map f(x,a), let us suppose that the sequence of x,(i)
is produced by a Bernoulli shift with two symbols 1, —1
(which could be thought of as coming from a symbolic
dynamics description of the logistic map) so that the
value 1 is obtained with probability p(a) and —1 with
probability ¢g(a) [=1—p(a)] depending on an external
parameter a. For fixed a, it is clear that the mean field
(1/N)ZY-1x,(j) has the value p(a)—q(a) and that it
does not fluctuate in the large N limit. Now, let us con-
sider the case where a is a random variable a, as in Eq.
(4). Then, each individual x,(i) has a probability p (a,) of
having the wvalue +1 [and the probability
q(a,)=1—p(a,) of having the value —1]. So, each indivi-
dual _map is a simple Bernoulli shift with probability
p =p(a) and ¢ =q (a) where the mean value (denoted by
an overbar) is taken over the probability distribution of a.
Nonetheless, in the large N limit, the mean field of an en-
semble of such maps has the sequence of values
pla,)—q(a,) and it fluctuates as much as g,. This is the
“violation of the law of large numbers.” In this simple
context, it is clearly seen that the phenomenon appears
because different maps are correlated since their individu-
al probability distribution at a given time (i.e., the invari-
ant probability distribution of the chaotic map) depends
on the value of the common noise term. What makes this
example very easy to deal with is that (i) the probability
distribution is known for each value of the external pa-
rameter and (i) the relaxation towards the new invariant
distribution when the external parameter is changed is
particularly simple, being complete in one time step.

Although we believe that the explanation of the results
of [12] is basically analogous, a complete analysis is
difficult to perform because these two features are no
longer true for the logistic map in the chaotic regime
away from the point a =2. So, we simply present here an
approximate calculation to support our view. We assume
that the set of maps relax in one time step to the new in-
variant measure when the parameter a is changed (an
“adiabatic” approximation). So, as the parameter a is
changed with time, the system wanders from one invari-
ant measure to the other. This produces fluctuations in
h, exactly as in the above simple example, since the value
of the mean field depends on the invariant distribution
used to calculate it.

Let us detail this reasoning. We first consider the case
where a is fixed. Support that a large number N of initial
points x,(1), ..., x,(N) are picked at random in [ —1,1].
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After t iterations with the logistic map f (x,a), N points
x,(1),...,x,(N) are obtained which in the limit N — o
are distributed according to the density function p,(x,a)
[14]. This density relaxes toward the invariant density
p(x,a) as t— . Correspondingly, in the limit of an
infinite number of maps the mean field A, [Eq. (2)] is sim-
ply the average of f(x,a) over the density p,(x,a). As
t — oo, it relaxes toward the first moment A (a) of p(x,a):

h(a)=ngnwhN=fdxp(a,x)f(x)=fdxp(a,x)x . (6)

Of course, for a finite N, h, y fluctuates around 4 (a).
Since one is summing N random uncorrelated variables
distributed according to the probability distribution
p(x,a), the fluctuations of h, y(a) for ¢ large are given by

(hx@ ) —[h(@ =~ | [dxplaxlx—h (@] |,

(7

where the average is taken over different initial condi-
tions of N maps. So the fluctuations of 4, y die out like
1/N when the number of maps is increased (“‘the law of
large numbers”).

Now, let us see how the picture changes when a itself
fluctuates in time. Then, the fluctuations of 4, y(a,)
come from two sources: the finite number of maps and
the fact that the invariant measure and therefore h (a) de-
pends on the value of a.

In order to obtain a simple estimate of the relative
magnitude of the two effects, we make the assumption
that the relaxation toward the asymptotic density p(x,a)
is complete in one time step [i.e., p, —,(x,a)=p(x,a)]. So,
as above we obtain

([h, @) ) =[h(a))
1
+ 1 Jdxplapx)lx —h(a) P, ®

where again the average is taken over different initial
conditions of N maps.

The fluctuations around the time-averaged mean field
are therefore obtained by averaging Eq. (8) over time.
The time average can be replaced by an average over the
distribution of a (which we also denote by an overbar).
Finally, we obtain for the mean field mean square fluctua-
tions Ay [Eq. (5)]:

Ay=Th@P—Th@ P+~ [ dx plax)lx —h (@] .

9

Therefore, when the number of maps is increased, the
fluctuations in time of 4, y do not die out (“the violation
of the law of large numbers”). We can compare the sim-
ple estimate of Eq. (9) with the numerical simulation re-
sults of [12]. There, a, was chosen as

a,=a(l+on,), (10)

where o is the magnitude of the fluctuation and 7, is a
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random number uniformly distributed in [—0.5,0.5].
The estimated time average mean field # and fluctuations
8h? [Eq. (9)] are

’_l.=m=_l_fa(l+o/2)da hia), 11)
aoc Ya(l—a/2)
Sh?= h(a)]z—[h(a)]2
=_l__fa(1+a/2)da[h(a)_’7]2 ) 12)

aoc Ya(l—o/2)

These expressions have been estimated by sampling the
function A (a). For each value of g, the invariant distri-
bution was estimated by iterating 800 times 10* initial
random points. Only the last 400 iterations were taken
into account in order to allow the relaxation of tran-
sients. For 0 =0.01, a =1.98, we obtained

h=(8.2+£0.2)X1072,
8h2=(5.01£0.5)X107*,

while a full simulation (along the lines of [12]) gives
h=8.8X107% 8h*=4.3X10"* For 0=0.02, a=1.98,
comparable agreement is obtained. The adiabatic ap-
proximation gives

h=(7.4+£0.4)x1072,
8h2=(9£1)X107*,

and the full simulation A =8.0X 1072, 842=8.3X107*.
In order to compare the full N dependence, the coefficient
of 1/N in Eq. (9) should be estimated. It is equal to J for
a =2 where the invariant distribution is explicitly known.
A close result of about 0.46 is obtained in the above two
cases (@ =1.98, 0=0.01 or 0.2). The adiabatic predic-
tion is compared with the results of a full simulation in
Fig. 1. The agreement is quite good and in fact better
than could have been expected from our rather crude ap-
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FIG. 1. Mean square deviation Ay of the mean field vs the
number of maps N from a direct simulation of the set of maps
(plus signs) [Eqs. (4) and (10)] and in the adiabatic approxima-
tion (solid line) [Eq. (9)]. The parameters are a =1.98, 0 =0.02.
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proximation. This leads us to think that the essence of
the phenomenon has been captured.

III. ENSEMBLES OF HOMOGRAPHIC MAPS

In Sec. II it has been shown that when a global term is
forcing an ensemble of maps, the individual maps values
x,(1),...,x,(N) become correlated because the invariant
density of each map depends on the global forcing.
When the forcing term is not imposed externally, as was
the case in Sec. II, but itself depends on the values of the
x,(j) a nontrivial collective dynamics can result. At the
level of the previous adiabatic approximation, the rela-
tion h,,=g(h;,) can be numerically obtained. In this
framework the emergence of a collective dynamics
amounts to finding whether this iteration reaches a fixed
point [10]. This approach has two obvious weak points.
Firstly, stability is tested only for a very restricted set of
perturbation so it can be strongly overestimated. More-
over, for the logistic map, g is a very irregular function
and the adiabatic approximation clearly needs some
refinements to be compared meaningfully with the simu-
lations [3] of the full system. Instead of pursuing this
difficult strategy, we follow an easier path. We choose a
map for which the invariant density is known for all pa-
rameter values and for which the relaxation toward the
invariant density is easily studied. The corresponding
globally coupled system can then be analyzed and the col-
lective behavior analytically characterized [15].

A. Properties of a single map

Motivated by the solvable Lloyd model [16] of a quan-
tum particle in a random potential, we consider the
homographic mapping

x,1=a—b/x,, a>0,b>0. (13)

In the following we consider the case a?—4b <0 when
this mapping has no real fixed point and the distribution
of successive iterates xg,x;,...,X;,... is nontrivial. It
can be very explicitly obtained by expressing x, in terms
of x (using the well-known fact that the composition of
homographic maps is equivalent to the product of associ-
ated 2 X2 matrices; see the Appendix):

x,=V'b [cos(6*)—sin(6*) tan(t6* +¢)] , (14)

where

*=arctan(V'4b /a’—1)

and ¢ depends on the value of the initial condition x,
{tan(@)=cot(6*)=x,/[V'b sin(6*)]]. When 6* is not
commensurate with 7, 160* [mod(w)] is uniformly distri-
buted in [ —w/2,7/2] and the distribution of x, in the
limit n — o« converges toward the Cauchy distribution:
1 s*

Pt e 1

with

r*=a/2, s*=1V4ab—a?. (16)
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A point of view which is complementary to this aver-
age over a trajectory and more relevant for the behavior
of an assembly of maps is to consider the evolution of
densities [14]. Consider a set of points which are distri-
buted according to a Cauchy distribution with parame-
ters r,,s, [Eq. (15)]. The new distribution after one itera-
tion is given by

P, = [dxp,  (x)8(y —(a—b/x). (D

t+ 15 +1

The new distribution of maps is again a Cauchy distri-
bution with new parameters r,, ,s, ., which are simple
functions of r,,s,. Defining the complex numbers
z,=r,+is,, a direct calculation shows that the relation
between (r,,s,) and (7, . ,5, 4 ;) can be expressed as

z,.1=a—b/z . (18)

The simplicity of the map given by Eq. (13) is that the
evolution of a density is reduced to the evolution of a
complex number.

It can be wondered if densities tend to the invariant
Cauchy density [Eq. (15)] under iteration by the homo-
graphic mapping [Eq. (13)]. In other terms, is the fixed
point x*=r*-+is* (16) an attractive fixed point for the
complex mapping (18)? The answer which may appear
surprising at first sight is that it is not the case. First, by
linearization the fixed point, z* is found to be marginally
stable for the homographic mapping [Eq. (18)]. In order
to elucidate fully the mapping dynamics in the complex
plane, it is convenient to introduce new complex coordi-
nates (see the Appendix). We define a variable w in the
following way:

io*
=vpte (19)
e w+1

It is straightforward to show that as z transforms accord-
ing to Eq. (18), w obeys

-, —2i6%
wt+1_e ' w, 3 (20)

which means that, for generic 6*, w draws a circle. Since
the transformation from z to w is homographic, z draws a
circle on the complex plane as well. The specific circle
depends, of course, on the initial condition. Therefore,
an arbitrary Cauchy distribution does not relax to the in-
variant distribution (15). The underlying reason is that
the homographic mapping [Eq. (13)] is ergodic but not
mixing so that the initial correlation between two points
does not decay with time [as shown by the explicit formu-
la Eq. (14)]. In order to remove this undesirable feature,
we slightly modify our model by adding independent ran-
dom noise to each map

X, 1)=a —b/x,()+E) . @1)

The simplicity of density evolution is preserved [16] if we
choose the noise probability distribution to be a Cauchy
distribution p, ,(§) since a linear combination of Cauchy
variable is also a Cauchy variable. Starting from a distri-
bution of the maps p, ;(x), the distribution after one

iteration is given by
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Pr s s, o)
= [dx d&p,,(&)p,  (X)8(y —(a —b/x +£))
(22)
Pr, . s, ., (%) is a Cauchy distribution as before but, in-
stead of Eq. (18), one has
z, .1, =a—b/z,+in. (23)

Linearization around the fixed point of this equation now
shows that for any small 7 the fixed point is stable. It
coincides with z*=r*+is* [Eq. (16)] as 7—0. The noise
destroys the correlations among maps, and densities relax
toward the invariant Cauchy distribution [Eq. (15)] as
iteration proceeds.

B. Globally coupled maps

Having analyzed the dynamics of a single homographic
map [Egs. (13) and (21)], we can study the behavior of a
globally coupled system of such maps. That is, we study
Eq. (1) with f(x) given by Eq. (21).

Before proceeding further, one point should be
clarified. One might think that if at time ¢ the maps are
distributed according to p,(x), when the mean field 4, is
determined as

——zf<x N——h, = [dx p,(x)f (x) . (24)
In our case, this gives
b= [ dx d&a—b/x+E)p, , (x)po(8)
=Rela —b/z,) . (25)

Equation (24) is true without further qualification for
usual bounded maps for which A, y is a well defined func-
tion of ¢ in the limit N— . However, this is not so if
the value f[x,(j)] are distributed according to a Cauchy
distribution because the second moment of the distribu-
tion diverges. In this case, averaging does not suppress
fluctuations. In fact, the average of independent Cauchy
variables is a Cauchy variable with the same distribution.
It could be interesting to study the evolution of a globally
coupled system of homographic maps taking this feature
into account. The mean field 4, would then be a stochas-
tic Cauchy variable distributed according to the density
at time ¢, while the complex parameter z, characterizing
the density would follow a stochastic recursion relation
depending on h,. We choose instead to stay closer to the
usual case by modifying the mean-field definition so as to
retain the result of Eq. (25). Since fluctuations of 2, come
from the dominating effect of rare events for which
f(x,(j)) is extremely large, we introduce a saturation
function S which bounds the influence of these rare
events:

N
,,N=% 3 S, 26)

where S (y)=y for |y| < 4 and S (y)= A4 otherwise. With
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this definition, 4, is well defined in the limit N — o and it
can be evaluated by an integration over the density as in
Eq. (24). In the large A limit, the result (25) is retained.

So, the dynamics of a system of globally coupled homo-
graphic maps with a coupling parameter € is chosen to be
given by

x, p1(j)=(1—€)a—b/x,(j)+&(j)]+eh,, 27

where A, is given by Eq. (26) with some very high cutoff
A. With this dynamics, a Cauchy distribution Pr,s,(X) is

evolving into another Cauchy distribution (x) in
g Pr 1+ 05t +1

the following way:

(1—ea—b/z,+in)+eRe(a—b/z,), (28)

2=

where as before z, =r, +is,. Again, the simplicity of the
model is that the evolution of the full distribution of cou-
pled maps is reduced to the simple iteration (28). So,
questions about the invariant distribution, its stability,
and the emergence of a nontrivial dynamics can be easily
addressed.

1. The invariant distribution

The invariant distribution is the Cauchy distribution
which corresponds to a fixed point of Eq. (28). Looking

for it under the form z, =Re'?, one obtains
(R2+b)cos(8)=aR ,
(29)
[R*—b(1—¢)]sin(8)=7nR (1—¢) .

In the small noise limit (7 <<1), which is the only one of
concern for us here, these equations can be easily solved
perturbatively. One obtains

R=Vb(1—¢ )+1,2 (9)+0( 7),
(1—e) (30)
6=0,—7 aell—¢€ +0(7?),

¢ 78b(1—e/2)*sin%(6,)
with

a(1—e)'”?

6)=—2="__  0<6 2.
cos(6,) 25 (1—e/2) <6.<w/

2. Stability of the invariant distribution

The stability of this invariant distribution under the
dynamics of Eq. (27) depends on the competition between
the noise (7), which tends to stabilize it, and the coupling
(€) which tends to synchronize the different maps. This
can be precisely and simply quantified in the two-
parameter space of possible Cauchy distributions by
linearizing the recursion relation (28) around the fixed
point (30) as z, =zgp +8z,. One obtains

52, = b(1— 6/2)8 + be 8_,, 31)
ZEp FP
where the overbar denotes complex conjugation.

Separating real and imaginary parts as 8z, =u, +iv, gives
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":+1=L2[COS(29)u,+sin(20)v,] ,

_b(l—e)

V41—

(32)
[ —sin(20)u, +cos(20)v,] .

To linear order in € and 7, the eigenvalues of this linear
recursion relation are

-1

1+ | £
2 Vb sin(6,)

Ay =et20 +0(e,en,n?)

(33)

The invariant distribution is destabilized when the
modulus of these eigenvalues becomes greater than 1. So,
a nontrivial dynamics appears as soon as

€E>€ =____2__77=_ (34)

This exact criterion can be compared to the prediction
of an adiabatic approximation. In this case Eq. (28)
would be replaced by

z, .,=(1—€)a—b/z,+in)+teh,, . (35)
The invariant distribution corresponds to the fixed point
of this recurs1on relatlon which is in the small 7 limit

=vVh(l—e)e' ‘,w1th

cos(0,4)=[(1—¢€)a +eh,,]/2Vb(1e) .

It can be used to compute h, as
hoi=Rela —b/z,4) . (36)

Imposing the self-consistency relation h,,=h,, gives
back 6,; =0, so that the fixed point in the adiabatic ap-
proximation coincides with the fixed point of the com-
plete iteration (z,4 =zgp) as it should. However, Eq. (36)
gives as a sufficient condition for stability of the invariant
distribution:

__€
2(1—¢)

This is clearly much weaker than the criterion (34). So, in
this case, the stability of the invariant distribution is
strongly overestimated in the adiabatic approximation.

<1l.

3. Analysis of the collective dynamics

It is interesting to characterize more completely the
emergent collective dynamics when the invariant distri-
bution is unstable. For € and 7 small and of comparable
magnitude, the usual techniques of weakly nonlinear
analysis can be applied [17]. We have found it con-
venient to use the w coordinates [Eq. (19)] in which the
unperturbed motion is a simple rotation. It is then sim-
ple to use averaging and obtain the mean displacement
due to the perturbation (see the Appendix):
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FIG. 2. Comparison between the trajectories in the (r,s)
plane obtained by iterating Eq. (28) (diamonds) and the limit cir-
cle predicted by Eq. (37) (solid line). The parameters are a =1,
b=2,7=0.01, €=0.02 (¢, =1.512X 1072).

<wt%—l—"ngwtl"’r>
—1p=20%, | e 20
2 ! V'b sin(6*)
'—le,|2+0(62,’f]6,7’]2)] . (37)

So, in the w coordinates the dynamics created by the
fixed point instability is a simple rotation around a circle
of radius

R,=[1—2n/€V'b sin(6*)]'/?

[18]. When reverting to the z coordinates, it is found that
the Cauchy distribution p, (x) follows a circle in the
(r,s) plane of center (cos(8*), Vb[(1+R?)/
(1—R?*)]sin(6*)) and radius

V'b [2R,/(1—R})]sin(6*) .

It is interesting to note that the truncated expansion (37)
is accurate for €~ and therefore it consistently de-
scribes circles of radius of order 1. The more usual Ve
magnitude is not obtained because restabilizing non-
linearities only appear through the coupling term and are
therefore of order € (and not as usual of order 1). As
shown in Fig. 2, the prediction of Eq. (37) compares well
with a direct simulation of the iteration (28).

IV. CONCLUSION

We have analyzed correlations between different maps
and their consequences in globally coupled systems using
simple models. We have first tried to clarify the
phenomenon described as a “violation of the law of large
numbers.” It has been argued that this is coming from
time fluctuations of the mean field arising from correla-

tions between different maps induced by the common
forcing term which modifies the map invariant distribu-
tion. For uncoupled systems of maps submitted to a glo-
bal noise, the magnitude of the correlations has been
found to be correctly estimated by a simple adiabatic ap-
proximation. In order to see further how the correlations
between different maps can induce a nontrivial collective
dynamics, we have introduced and analyzed a globally
coupled model of homographic maps. A precise criterion
for the emergence of a collective dynamics has been ob-
tained and this global motion has been characterized.

Several questions remain for further investigations.
We expect that a collective dynamics appears in a large
class of globally coupled systems but finding a simple cri-
terion would be nice. A precise analysis of the emergent
dynamics for globally coupled logistic maps also seems a
challenging task. On a more qualitative level, an under-
standing of the peculiar influence of noise in this [3,10]
and other [8,9] globally coupled systems would also be
very interesting. Finally, physical realizations of these
systems would be quite welcome.
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APPENDIX

Computations with homographic maps are convenient-
ly done by using their relation with 2X2 matrices. To
each homographic map m (z), one can associate a 2X2
Matrix M:

2)= az+b A1)

cz+d

Under this correspondence, composition of homographic
maps is equivalent to matrix multiplication. One can
directly obtain m (z) from the matrix M by evaluating the
product of M with the vector (%) and by taking the ratio
of the upper and lower components of the resulting vec-
tor.

So, to study the iteration

z, ., =l(z,)=a—b/z,, a>0,b>0, a*—4b<0,

(A2)
it is useful to introduce the matrix L:
a/Vb —Vb
L= o =PDP ', (A3)
where the diagonalization of L involves the two matrices
Ve Vel e ~i0"
P=leo 1 ]2 P70 o) Y
The decomposition (A3) can be interpreted as a composi-
tion of homographic transformations ! =podop ~!. So,

in the w coordinates such that z =p (w), [ is reduced to
the homographic transformation d associated to the diag-
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onal matrix D, i.e., / is a simple rotation of angle —26*.
The expression of p (w) given in the main text [Eq. (19)] is
readily obtained from the expression of the associated
matrix P given above [Eq. (A4)]:

w +e*
% .
e w+1

x, can easily be expressed as a function of x, by using a
decomposition over the eigenvectors of L:

z=p(w)=Vb (AS5)

X 1 Vet |vBeie*
=——/e* +e ¢
1 2 cos(¢) 1 2 ’
(A6)
with

xo=V'b cos(8*+¢)/cos(¢)
or, equivalently,
tan(¢)=cos(8*)—x,/[V'D sin(6*)] .

Therefore, the action of L' is given by

io*
L’ %o =_____1 ei® Vbe' eire‘
1 2cos(¢) 1
|Vbe |
+eit . e” % 1 (A7)

x, is simply given by the ratio of the upper and lower
component of Eq. (A7):

x=Vb cos[¢+(z +1)6*]
cos(¢+16*)
=V'b [cos(6*)—sin(6*) tan(¢+16*)] , (A8)

which is Eq. (14) of the main text.

The w coordinates are quite convenient for studying
the dynamics of the globally coupled maps. Equation
(28) reads in these coordinates

w,+1=e"2"9‘w,+E(w,)+0(62,617,772) R (A9)
with
1 € 1 1
= lig+ S |————==}|, 10
E(w) 0 [177 2 2w pw) ’

where complex conjugation is denoted by an overbar and
differentiation by a prime. The effect of the perturbation
E (w) can be estimated by averaging it along the unper-
turbed orbit which covers densely and uniformly a

circle for 60* incommensurate with 7. Defining
v, =exp(2i6*t)w,, Eq. (A9) is rewritten as
v, 41 =0, 4+ CTVE(p e "2 L O(2 en,m?) . (A1)

Averaging the perturbation along the unperturbed orbit
gives

E(v)5<e2ie‘(z+1)E(ve —2i6't)>t

=e20" [2789 isp (ye i) | (A12)
0o 2w
Using Eq. (A10), one obtains
= _ | € n € 2
EQw)=|-— v——v|v, (A13)
2 Vb sin(6*) 2| |

which is Eq. (37) of the main text.
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